Solveeit Logo

Question

Question: If f, g, and h are the lengths of the perpendicular from the circumcentre of triangle ABC on the sid...

If f, g, and h are the lengths of the perpendicular from the circumcentre of triangle ABC on the sides a, b and c respectively. Prove that af+bg+ch=14abcfgh\dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = \dfrac{1}{4}\dfrac{{abc}}{{fgh}}.

Explanation

Solution

We’ll initiate our solution using the theorem, the angle made at the circumcentre is double the angle of the remaining vertex. Then we’ll use the famous trigonometric identity tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C to get the solution.

Complete step-by-step answer :
First of all, we’ll draw the diagram for a better understanding of the question batter.

O is our circumcentre in the triangle.
Now, observe in the triangle OBD, OD is the given length f.
We need to somehow get af\dfrac{a}{f} so let’s consider, tanA\tan A. One might think why tanA\tan A so it's because we knew that the angle made at the circumcentre is double the angle of the remaining vertex.
Now, tanA=a2f\tan A = \dfrac{a}{{2f}}
So, af=2tanA(1)\dfrac{a}{f} = 2\tan A - - - - (1)
Similarly, tanB=b2g\tan B = \dfrac{b}{{2g}} , which is nothing but bg=2tanB(2)\dfrac{b}{g} = 2\tan B - - - - (2)
And, in the end, tanC=c2h\tan C = \dfrac{c}{{2h}}
So, ch=2tanC(3)\dfrac{c}{h} = 2\tan C - - - (3)

Keep this in mind, we have to prove that af+bg+ch=14abcfgh\dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = \dfrac{1}{4}\dfrac{{abc}}{{fgh}}
And we have got the value of af,bg,\dfrac{a}{f},\dfrac{b}{g}, and ch\dfrac{c}{h}. By using them
af+bg+ch=2tanA+2tanB+2tanC af+bg+ch=2(tanA+tanB+tanC) \begin{gathered} \dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = 2\tan A + 2\tan B + 2\tan C \\\ \Rightarrow \dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = 2(\tan A + \tan B + \tan C) \\\ \end{gathered}
Here, we know that, tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C
Using this trigonometric identity
af+bg+ch=2(tanA+tanB+tanC) af+bg+ch=2(tanAtanBtanC) af+bg+ch=2(a2f×b2g×c2h) af+bg+ch=2(abc8fgh) af+bg+ch=14abcfgh \begin{gathered} \dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = 2(\tan A + \tan B + \tan C) \\\ \Rightarrow \dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = 2(\tan A\tan B\tan C) \\\ \Rightarrow \dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = 2(\dfrac{a}{{2f}} \times \dfrac{b}{{2g}} \times \dfrac{c}{{2h}}) \\\ \Rightarrow \dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = 2(\dfrac{{abc}}{{8fgh}}) \\\ \Rightarrow \dfrac{a}{f} + \dfrac{b}{g} + \dfrac{c}{h} = \dfrac{1}{4}\dfrac{{abc}}{{fgh}} \\\ \end{gathered}

Hence proved.

Note : Those who are interested in tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C for any triangle, can prove this in the following way. In the triangle, we know, A+B+C=π\angle A + \angle B + \angle C = \pi . Taking C to the right-hand side and then tab both sides we’ll get
tan(A+B)=tan(πC) tanA+tanB1tanAtanB=tanC tanA+tanB=tanC+tanAtanBtanC tanA+tanB+tanC=tanAtanBtanC \begin{gathered} \tan (A + B) = \tan (\pi - C) \\\ \Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = - \tan C \\\ \Rightarrow \tan A + \tan B = - \tan C + \tan A\tan B\tan C \\\ \Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C \\\ \end{gathered}