Solveeit Logo

Question

Mathematics Question on Relations and functions

If f:BAf : B \to A is defined by f(x)=3x+45x7f \left(x\right) = \frac{3x+4}{5x-7} and g:ABg : A \to B is defined by g(x)=7x+45x3g \left(x\right) = \frac{7x+4}{5x-3}, where A = R - \left\\{\frac{3}{5}\right\\} and B = R - \left\\{\frac{7}{5}\right\\} and IAI_{A} is an identity function on A and IBI_{B} is identity function on B, then

A

fog=IAfog = I_A and gof=IAgof = I_A

B

fog=IAfog = I_A and gof=IBgof = I_B

C

fog=IBfog = I_B and gof=IBgof = I_B

D

fog=IBfog = I_B and gof=IAgof = I_A

Answer

fog=IAfog = I_A and gof=IBgof = I_B

Explanation

Solution

We have, gof(x)=g(3x+45x7)=7((3x+4)(5x7))+45((3x+4)(5x7))3gof \left(x\right) = g\left(\frac{3x+4}{5x-7}\right) = \frac{7\left(\frac{\left(3x+4\right)}{\left(5x-7\right)}\right)+4}{5\left(\frac{\left(3x+4\right)}{\left(5x-7\right)}\right)-3} =21x+28+20x2815x+2015x+21=41x41=x= \frac{21x + 28 + 20x - 28}{15x + 20 - 15x + 21} = \frac{41x}{41} = x Similarly, fog(x)=f(7x+45x3)fog \left(x\right) = f\left(\frac{7x+4}{5x-3}\right) =3((7x+4)(5x3))+45((7x+4)(5x3))7= \frac{3\left(\frac{\left(7x+4\right)}{\left(5x-3\right)}\right)+4}{5\left(\frac{\left(7x+4\right)}{\left(5x-3\right)}\right)-7} =21x+12+20x1235x+2035x+21=41x41=x= \frac{21x + 12 + 20x - 12}{35x + 20 - 35x + 21} = \frac{41x}{41} = x Thus, gof(x)=x,xBgof \left(x\right) = x, \forall x \in B and fog(x)=x,xAfog \left(x\right) = x, \forall x \in A, which implies that gof=IBgof = I_{B} and fog=IA.fog = I_{A}.