Question
Question: If \[f(ax) = \left[ {\begin{array}{*{20}{c}} a&{ - 1}&0 \\\ {ax}&a;&{ - 1} \\\ {a{x^2}...
If f(ax) = \left[ {\begin{array}{*{20}{c}} a&{ - 1}&0 \\\ {ax}&a;&{ - 1} \\\ {a{x^2}}&{ax}&a; \end{array}} \right], using properties of determinants, find the value of f(2x)−f(x) .
Solution
You can easily understand, this is a numerical problem of determinants. Do you know what determinants are? Determinant is a scalar value that can be completed from the elements of a square matrix and includes certain properties of linear transformation described by the matrix is denoted as det(A) , det A or |A|. Determinants are mainly used as a theoretical tool.
Complete step by step solution:
Given data: f(ax) = \left[ {\begin{array}{*{20}{c}}
a&{ - 1}&0 \\\
{ax}&a;&{ - 1} \\\
{a{x^2}}&{ax}&a;
\end{array}} \right]
We need to find out the value of f(2x)−f(x) .
We will simplify f(ax) ,
a \cdot f(ax) = a\left| {\begin{array}{{20}{c}}
0&{ - 1}&0 \\
{x + a}&a;&{ - 1} \\
{{x^2} + ax}&{ax}&a;
\end{array}} \right|, \\
\Rightarrow f(x) = ,\left| {\begin{array}{{20}{c}}
0&{ - 1}&0 \\
{x + a}&a;&{ - 1} \\
{{x^2} + ax}&{ax}&a;
\end{array}} \right| \\
\Rightarrow f\left( x \right) = 0 - \left( { - 1} \right)\left( {a\left( {x + a} \right) - \left( { - 1} \right)\left( {{x^2} + ax} \right)} \right) + 0 \\
\Rightarrow f\left( x \right) = 1\left( {ax + {a^2} + 1\left( {{x^2} + ax} \right)} \right) \\
\Rightarrow f\left( x \right) = {x^2} + {a^2} + 2ax \\
\Rightarrow f\left( {2x} \right) = {\left( {2x + a} \right)^2} \\
\Rightarrow f\left( {2x} \right) = 4{x^2} + {a^2} + 4ax \\
\Rightarrow f\left( {2x} \right) - f\left( x \right) = \left( {4{x^2} + {a^2} + 4ax} \right) - {\left( {x + a} \right)^2} \\
\Rightarrow f\left( {2x} \right) - f\left( x \right) = 4{x^2} + {a^2} + 4ax - \left( {{x^2} + {a^2} + 2ax} \right) \\
\Rightarrow f\left( {2x} \right) - f\left( x \right) = 4{x^2} + {a^2} + 4ax - {x^2} - {a^2} - 2ax \\
\Rightarrow f\left( {2x} \right) - f\left( x \right) = 3{x^2} + 2ax \\