Solveeit Logo

Question

Question: If f and g are differentiable functions the D*(fg) is equal to [a] f D*g+ gD*f [b] D*fD*g [c] ...

If f and g are differentiable functions the D*(fg) is equal to
[a] f Dg+ gDf
[b] DfDg
[c] f2Dg+g2Df{{f}^{2}}D*g+{{g}^{2}}D*f
[d] f(Dg)2+g(Df)2f{{\left( D*g \right)}^{2}}+g{{\left( D*f \right)}^{2}}

Explanation

Solution

Hint: Recall the definition of limit of a function f(x).
Df(x)=limh0f(x+h)f(x)hD*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}.
Using this definition of this list find the expression for D*(fg(x)).

Complete step by step answer -

We know that Df(x)=limh0f(x+h)f(x)hD*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}
Replace f(x) by h(x) = f(x)g(x), we get
D(f(x)g(x))=limh0f(x+h)g(x+h)f(x)g(x)hD*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}
Adding and subtracting f(x+h)g(x) in numerator, we get
D(f(x)g(x))=limh0f(x+h)g(x+h)f(x+h)g(x)+f(x+h)g(x)f(x)g(x)hD*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}
Hence, we have
D(f(x)g(x))=limh0f(x+h)(g(x+h)g(x))+g(x)(f(x+h)f(x))h =limh0f(x+h)(g(x+h)g(x))h+limh0g(x)(f(x+h)f(x))h \begin{aligned} & D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\\ & =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\\ \end{aligned}
Since f(x) and g(x) are differentiable functions, we have
limh0f(x+h)f(x)h\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} exists and is equal to D*(f(x))
limh0g(x+h)g(x)h\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x+h \right)-g\left( x \right)}{h} exists and is equal to D*(g(x))
Also since f(x) is differentiable, f(x) is continuous.
Hence, we have
limh0f(x+h)\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right) exists and is equal to f(x).
Using the above results, we have
D(f(x)g(x))=f(x)D(g(x))+g(x)D(f(x))D*\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)D*\left( g\left( x \right) \right)+g\left( x \right)D*\left( f\left( x \right) \right)
Hence option [a] is correct.

Note: [1] Remember the above derived result.
It is known as product rule of differentiation and is usually written as
(uv)’ = uv’+v’u.
[2] Other than f’(x) and d(f(x))dx\dfrac{d\left( f\left( x \right) \right)}{dx} we use DD to represent the derivative of a function.
[3] In the above solution we have used the property that if limxaf(x)\underset{x\to a}{\mathop{\lim }}\,f\left( x \right) exists and limxag(x)\underset{x\to a}{\mathop{\lim }}\,g\left( x \right), then so do the limits limxaf(x)g(x),limxa(f(x)±g(x))\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)\pm g\left( x \right) \right) and limxaf(x)g(x)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}, with the last one holding if limxag(x)0\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0.
[4] In the above solution, we have used the property that differentiable functions are continuous.
This is true since if either LHL or RHL does not exist, then limh0f(x+h)f(x)h\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}, will not exist.
And if limit exists but is not equal to f(x), then we have limh0f(x+h)f(x)0\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)-f\left( x \right)\ne 0 and hence limh0f(x+h)f(x)h\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} does not exist.
[3] Differentiation of division of functions
(uv)=vuuvv2{{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{vu'-uv'}{{{v}^{2}}}