Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

If f(α)f(\alpha) =1αlog10t1+tdt\int_{1}^{\alpha}\frac{log_{10}t}{1+t}dt , α>0\alpha>0, then f(e3) + f(e–3) is equal to :

A

9

B

92\frac{9}{2}

C

9loge10\frac{9}{log_e{10}}

D

\frac{9}{2}$$log_e10

Answer

\frac{9}{2}$$log_e10

Explanation

Solution

f(α)=\int_{1}^{\alpha}$$\frac{log 10t}{1+t} dt⋯(i)
f(1α\frac{1}{\alpha})=11αlog10t1+tdt\int_{1}^{\frac{1}{\alpha}}\frac{log_{10}t}{1+t}dt
Substituting t = 1p\frac{1}{p}
f(1α\frac{1}{\alpha})=11αlog10(1p)dt\int_{1}^{\frac{1}{\alpha}}\frac{log_{10}(\frac{1}{p})}dt
=1αlog10pp(p+1)dp\int_{1}^{\alpha} \frac{log_{10}p}{p(p+1)}dp=1α(log10ttlog10tt+1)\int_{1}^{\alpha}(log \frac{10t }{t}-\frac{log\,10t}{t}+1)dt ⋯(ii)
By (i) + (ii)
f(α)+f(1α\frac{1}{\alpha})=1α\int_{1}^{\alpha} log10tt\frac{log\,10t}{t} dt=1α\int_{1}^{\alpha} lntt.log10e\frac{ln\,t}{t.log_{10}e}dt
α=e3⇒f(e3)+f(e−3)=92loge10\frac{9}{2}log_e10
So, the correct option is (D): 92loge10\frac{9}{2}log_e10