Question
Mathematics Question on Fundamental Theorem of Calculus
If f(α) =∫1α1+tlog10tdt , α>0, then f(e3) + f(e–3) is equal to :
A
9
B
29
C
loge109
D
\frac{9}{2}$$log_e10
Answer
\frac{9}{2}$$log_e10
Explanation
Solution
f(α)=\int_{1}^{\alpha}$$\frac{log 10t}{1+t} dt⋯(i)
f(α1)=∫1α11+tlog10tdt
Substituting t = p1
f(α1)=∫1α1dlog10(p1)t
=∫1αp(p+1)log10pdp=∫1α(logt10t−tlog10t+1)dt ⋯(ii)
By (i) + (ii)
f(α)+f(α1)=∫1α tlog10t dt=∫1α t.log10elntdt
α=e3⇒f(e3)+f(e−3)=29loge10
So, the correct option is (D): 29loge10