Solveeit Logo

Question

Question: If f (a + b –x) = f (x) then \(\int _ { a } ^ { b } x\)f (x) dx is equal to...

If f (a + b –x) = f (x) then abx\int _ { a } ^ { b } xf (x) dx is equal to

A

ab2\frac { a - b } { 2 } abf(x)\int _ { a } ^ { b } f ( x )d x

B

(a+b2)\left( \frac { a + b } { 2 } \right) abf(x)\int _ { a } ^ { b } f ( x )d x

C

0

D

None of these

Answer

\left( \frac { a + b } { 2 } \right)$$\int _ { a } ^ { b } f ( x )d x

Explanation

Solution

Let I = ab\int _ { a } ^ { b }(a+b-x) f (a +b-x) dx

= (a + b) abf\int _ { a } ^ { b } f (a +b –x)dx - ab\int _ { a } ^ { b }x f (a + b – x) dx

= (a + b) ab\int _ { a } ^ { b }f (x) dx - ab\int _ { a } ^ { b }x f (x) dx.

Hence I = (a+b2)\left( \frac { a + b } { 2 } \right) ab\int _ { a } ^ { b }f(x) dx.