Solveeit Logo

Question

Question: If f (a + b –x) = f (x) then \(\int_{a}^{b}x\)f (x) dx is equal to...

If f (a + b –x) = f (x) then abx\int_{a}^{b}xf (x) dx is equal to

A

ab2\frac { a - b } { 2 } abf(x)\int_{a}^{b}{f(x)}d x

B

(a+b2)\left( \frac { a + b } { 2 } \right) abf(x)\int_{a}^{b}{f(x)}d x

C

0

D

None of these

Answer

\left( \frac { a + b } { 2 } \right)$$\int_{a}^{b}{f(x)}d x

Explanation

Solution

Let I = abx\int_{a}^{b}x f (x) dx =ab\int_{a}^{b}{} (a + b – x) f (a + b – x) dx

= (a + b) abf\int_{a}^{b}f (a + b –x)dx – ab\int_{a}^{b}{}x f (a + b – x) dx

= (a + b) ab\int_{a}^{b}{}f (x) dx – ab\int_{a}^{b}{}x f (x) dx.

Hence I = (a+b2)\left( \frac { a + b } { 2 } \right) ab\int_{a}^{b}{}f(x) dx