Solveeit Logo

Question

Mathematics Question on integral

If f(a+bx)=f(x)f (a + b - x) = f (x), then abxf(x)dx\int\limits^{b}_{{a}}x\, f\, (x) \,dx is equal to

A

a+b2abf(bx)dx\frac{a+b}{2}\int\limits^{b}_{{a}}f(b-x) \,dx

B

a+b2abf(x)dx\frac{a+b}{2}\int\limits^{b}_{{a}}f(x) \,dx

C

ba2abf(x)dx\frac{b-a}{2}\int\limits^{b}_{{a}}f(x)dx

D

a+b2abf(a+bx)dx\frac{a+b}{2}\int\limits^{b}_{{a}}f(a+b-x)dx

Answer

a+b2abf(x)dx\frac{a+b}{2}\int\limits^{b}_{{a}}f(x) \,dx

Explanation

Solution

abxf(x)dx\int\limits^{b}_{{a}}x\, f\, (x) \,dx =ab(a+bx)f(a+bx)dx=\int\limits^{b}_{{a}}(a+b-x) f (a + b - x) dx.