Solveeit Logo

Question

Mathematics Question on integral

If ƒ(a+bx)=ƒ(x)ƒ(a+b-x)=ƒ(x),then abxƒ(x)dx∫^b_axƒ(x)dx is equal to

A

a+b2abƒ(bx)dx\frac{a+b}{2}∫^b_aƒ(b-x)dx

B

a+b2abƒ(b+x)dx\frac{a+b}{2}∫^b_aƒ(b+x)dx

C

ba2abƒ(x)dx\frac{b-a}{2}∫^b_aƒ(x)dx

D

a+b2abƒ(x)dx\frac{a+b}{2}∫^b_aƒ(x)dx

Answer

a+b2abƒ(x)dx\frac{a+b}{2}∫^b_aƒ(x)dx

Explanation

Solution

The correct answer is D:(a+b2)abƒ(x)dx(\frac{a+b}{2})∫^b_aƒ(x)dx
Let I=abxƒ(x)dx...(1)I=∫^b_axƒ(x)dx...(1)
I=ab(a+bx)ƒ(a+bx)dx(abƒ(x)dx=abƒ(a+bx)dx)I=∫^b_a(a+b-x)ƒ(a+b-x)dx\,\,\,\, (∫^b_aƒ(x)dx=∫^b_aƒ(a+b-x)dx)
I=ab(a+bx)ƒ(x)dx⇒I=∫^b_a(a+b-x)ƒ(x)dx
I=(a+b)abƒ(x)dxI[Using(1)]⇒I=(a+b)∫^b_aƒ(x)dx-I [Using(1)]
I+I=(a+b)abƒ(x)dx⇒I+I=(a+b)∫^b_aƒ(x)dx
2I=(a+b)abƒ(x)dx⇒2I=(a+b)∫^b_aƒ(x)dx
I=(a+b2)abƒ(x)dx⇒I=(\frac{a+b}{2})∫^b_aƒ(x)dx
Hence,the correct Answer is D.