Question
Mathematics Question on limits and derivatives
If f(a)=a2,ϕ(a)=b2 and f′(a)=3ϕ′(a) then Ltx→aϕ(x)−bf(x)−a is
A
b2b2
B
ab
C
a2b
D
a3b
Answer
a3b
Explanation
Solution
Ltx→0ϕ(x)−bf(x)−a =Ltx→aϕ(x)−b2f(x)−a2.f(x)+aϕ(x)+b =Ltx→a.ϕ(x)−ϕ(a)f(x)−f(a).f(x)+aϕ(x)+b =ϕ′(a)(f(a)+a)f′(a)(ϕ(a)+b)=3.a+ab+b=3.2a2b=a3b