Solveeit Logo

Question

Mathematics Question on Limits

If f(2)=4f(2) = 4 and f(2)=1f'(2) = 1, then limx2xf(2)2f(x)x2\displaystyle\lim_{x \to 2} \frac{xf (2) - 2 f (x) }{x -2} is equal to

A

-2

B

1

C

2

D

3

Answer

2

Explanation

Solution

The value of limx2xf(2)2f(x)x2\displaystyle\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}
=limx2xf(2)2f(2)+2f(2)2f(x)x2=\displaystyle\lim _{x \rightarrow 2} \frac{x f(2)-2 f(2)+2 f(2)-2 f(x)}{x-2}
=limx2(x2)f(2)x22limx2f(x)f(2)x2=\displaystyle\lim _{x \rightarrow 2} \frac{(x-2) f(2)}{x-2}-2 \displaystyle\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}
=f(2)2f(2)=42×1=2=f(2)-2 f'(2)=4-2 \times 1=2