Solveeit Logo

Question

Question: If f '(1)=2, \(g'(\\\sqrt{2})\) = 4 then the derivative of f (tan x) with respect to g(sec x) at x ...

If f '(1)=2, g(2)g'(\\\sqrt{2}) = 4 then the derivative of

f (tan x) with respect to g(sec x) at x = p/4 is

A

1

B

2\sqrt{2}

C

22\frac{\sqrt{2}}{2}

D

2

Answer

22\frac{\sqrt{2}}{2}

Explanation

Solution

y = f(tan x) z = g(sec x)

dydx\frac{dy}{dx}= f '(tanx).sec2x

dzdx\frac{dz}{dx}= g'(sec x) secx tanx

put x = π4\frac{\pi}{4}

dydx\frac{dy}{dx} = f ' (1).2

dzdx\frac{dz}{dx}=g(2).2g'(\sqrt{2}).\sqrt{2}

dydz\frac{dy}{dz}=2f(1)g(2).2\frac{2f'(1)}{g'(\sqrt{2}).\sqrt{2}} = 2×242\frac{2 \times 2}{4\sqrt{2}}=12\frac{1}{\sqrt{2}}