Solveeit Logo

Question

Mathematics Question on composite of functions

If f(1)=1,f(1)=3f(1) = 1, \quad f'(1) = 3 then the derivative of f(f(f(x)))+(f(x))2f(f(f(x))) + (f(x))^2 at x=1x= 1 is

A

10

B

35

C

33

D

12

Answer

33

Explanation

Solution

Given:
f(1)=1f(1) = 1
f(1)=3f'(1) = 3
Let's break down the expression step by step.

First, let's consider the term f(f(f(x)))f(f(f(x))). Using the chain rule, the derivative of f(f(f(x)))f(f(f(x))) with respect to x is:
ddx(f(f(f(x))))=f(f(f(x)))f(f(x))f(x)\frac{d}{dx} \left( f(f(f(x))) \right) = f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x)

Now, let's evaluate this at x = 1:
ddx(f(f(f(x))))x=1=f(f(f(1)))f(f(1))f(1)\left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} = f'(f(f(1))) \cdot f'(f(1)) \cdot f'(1)

Since f(1)=1f(1) = 1, we have:
ddx(f(f(f(x))))x=1=f(f(f(1)))f(f(1))3\left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} = f'(f(f(1))) \cdot f'(f(1)) \cdot 3

Next, let's consider the term (f(x))2(f(x))^2. The derivative of (f(x))2(f(x))^2 with respect to x is:
ddx((f(x))2)=2f(x)f(x)\frac{d}{dx} \left( (f(x))^2 \right) = 2 \cdot f(x) \cdot f'(x)

Now, let's evaluate this at x = 1:
ddx((f(x))2)x=1=2f(1)f(1)\left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1} = 2 \cdot f(1) \cdot f'(1)

Since f(1)=1f(1) = 1 and f(1)=3f'(1) = 3, we have:
ddx((f(x))2)x=1=213=6\left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1} = 2 \cdot 1 \cdot 3 = 6

Finally, to find the derivative of the entire expression, we add the derivatives of the two terms:

ddx(f(f(f(x)))+(f(x))2)x=1=ddx(f(f(f(x))))x=1+ddx((f(x))2)x=1\left. \frac{d}{dx} \left( f(f(f(x))) + (f(x))^2 \right) \right|_{x=1} = \left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} + \left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1}

= f(f(f(1)))f(f(1))3+6f'(f(f(1))) \cdot f'(f(1)) \cdot 3 + 6

Since f(f(1))=f(1)=1,f(f(1)) = f(1) = 1, we have:

ddx(f(f(f(x)))+(f(x))2)x=1=f(1)f(1)3+6\left. \frac{d}{dx} \left( f(f(f(x))) + (f(x))^2 \right) \right|_{x=1} = f'(1) \cdot f'(1) \cdot 3 + 6
=3×3×3+6=3 \times 3 \times 3 + 6
=27+6= 27 + 6
=33= 33
Therefore, the derivative of f(f(f(1)))+(f(1))2f(f(f(1))) + (f(1))^2 is 33, which corresponds to option (C) 33.