Solveeit Logo

Question

Mathematics Question on Relations and functions

If f(1)=1f(1)=1 and f(n+1)=2f(n)+1f(n+1)=2f (n)+1 if n1n \ge1, then f(n)f(n) is equal to

A

2n+12^{n}+1

B

2n2^{n}

C

2n12^{n}-1

D

2n112^{n-1}-1

Answer

2n12^{n}-1

Explanation

Solution

f(1)=1f\left(1\right)=1 and f(n+1)=2f(n)+1,n1f\left(n+1\right)=2f\left(n\right)+1, n \ge1. f(2)=2(1)+1=3,f(3)=7,f(4)=15,\therefore f\left(2\right)=2\left(1\right)+1=3, f\left(3\right)=7, f\left(4\right)=15, \ldots and so on Thus, f(1)=211,f(2)=221f\left(1\right)=2^{1}-1, f\left(2\right)=2^{2}-1, f(3)=231,,f(n)f\left(3\right) = 2^{3} - 1, \ldots, f\left(n\right) =2n1=2^{n}-1.