Solveeit Logo

Question

Mathematics Question on Determinants

If f:[0,π/2)Rf:[0, \pi / 2) \rightarrow R is defined as f(θ)=1tanθ1 tanθ1tanθ 1tanθ1f(\theta)=\begin{vmatrix}1 & \tan \theta & 1 \\\ -\tan \theta & 1 & \tan \theta \\\ -1 & -\tan \theta & 1\end{vmatrix}. Then, the range of ff is

A

(2,)\left(2, \infty\right)

B

(,2](-\:\infty ,\:-2]

C

[2,)[2, \infty)

D

(,2](-\infty, 2]

Answer

[2,)[2, \infty)

Explanation

Solution

The correct answer is C:[2,][2,\infin]
We have, f(θ)=1tanθ1 tanθ1tanθ 1tanθ1f(\theta)=\begin{vmatrix}1 & \tan \theta & 1 \\\ -\tan \theta & 1 & \tan \theta \\\ -1 & -\tan \theta & 1\end{vmatrix}
For, f:[0,π2]Rf:[0,\frac{\pi}{2}]\rightarrow{R}
=1\left(1+\tan ^{2} \theta\right)-\tan \theta$$(-\tan \theta+\tan \theta)+1\left(\tan ^{2} \theta+1\right)
=2(1+tan2θ)0=2sec2θ=2\left(1+\tan ^{2} \theta\right)-0=2 \sec ^{2} \theta
\therefore Range of f=(2,)f=(2, \infty)
trignometry