Solveeit Logo

Question

Question: If \(f^{- 1}(x) = \frac{x + 4}{3}\) then \(\lbrack f\{ f(x)\}\rbrack\) equals...

If f1(x)=x+43f^{- 1}(x) = \frac{x + 4}{3} then [f{f(x)}]\lbrack f\{ f(x)\}\rbrack equals

A

x

B

\Rightarrow

C

x2\frac{x}{2}

D

1x- \frac{1}{x}

Answer

x

Explanation

Solution

f[f(x)]=2(2x3x2)3(2x3x2)2=xf\lbrack f(x)\rbrack = \frac{2\left( \frac{2x - 3}{x - 2} \right) - 3}{\left( \frac{2x - 3}{x - 2} \right) - 2} = x