Question
Question: If exp {(tan<sup>2</sup> x – tan<sup>4</sup> x + tan<sup>6</sup> x – tan<sup>8</sup> x + ….) log<sub...
If exp {(tan2 x – tan4 x + tan6 x – tan8 x + ….) loge 16}, 0 < x <p/4, satisfies the quadratic equation x2 – 3x + 2 = 0, then value of cos2 x + cos4x is-
A
4/5
B
21/16
C
17/11
D
19/31
Answer
21/16
Explanation
Solution
We have
tan2 x – tan4 x + tan6 x – tan8 x + …….
= 1−(−tan2x)tan2x =sec2xtan2x = sin2 x
\ y = exp {(tan2 x – tan4 x + tan6 x – tan8x + ….) loge 16}
= exp {(sin2 x)loge16} = exp {loge }
=
As y satisfies x3 – 3x + 2 = 0, we get
y = 1 or y = 2.
̃ = 1 or
= 2
Since 0 < x < p/4, 0 < sin x < 1/2
̃ 0 < sin2 x < ½
̃ = 1 is not possible.
Thus, = 2
̃ sin2 x = ¼
Thus, cos2 x + cos4 x = (1 – sin2 x) + (1 – sin2 x)2= 21/16.