Solveeit Logo

Question

Question: If exp {(tan<sup>2</sup> x – tan<sup>4</sup> x + tan<sup>6</sup> x – tan<sup>8</sup> x + ….) log<sub...

If exp {(tan2 x – tan4 x + tan6 x – tan8 x + ….) loge 16}, 0 < x <p/4, satisfies the quadratic equation x2 – 3x + 2 = 0, then value of cos2 x + cos4x is-

A

4/5

B

21/16

C

17/11

D

19/31

Answer

21/16

Explanation

Solution

We have

tan2 x – tan4 x + tan6 x – tan8 x + …….

= tan2x1(tan2x)\frac { \tan ^ { 2 } x } { 1 - \left( - \tan ^ { 2 } x \right) } =tan2xsec2x\frac { \tan ^ { 2 } x } { \sec ^ { 2 } x } = sin2 x

\ y = exp {(tan2 x – tan4 x + tan6 x – tan8x + ….) loge 16}

= exp {(sin2 x)loge16} = exp {loge }

=

As y satisfies x3 – 3x + 2 = 0, we get

y = 1 or y = 2.

̃ = 1 or = 2

Since 0 < x < p/4, 0 < sin x < 1/2\sqrt { 2 }

̃ 0 < sin2 x < ½

̃ = 1 is not possible.

Thus, = 2

̃ sin2 x = ¼

Thus, cos2 x + cos4 x = (1 – sin2 x) + (1 – sin2 x)2= 21/16.