Solveeit Logo

Question

Question: If every term of a G.P. with positive terms is the sum of its two previous terms, then the common ra...

If every term of a G.P. with positive terms is the sum of its two previous terms, then the common ratio of the series is.

A

1

B

25\frac { 2 } { \sqrt { 5 } }

C

512\frac { \sqrt { 5 } - 1 } { 2 }

D

5+12\frac { \sqrt { 5 } + 1 } { 2 }

Answer

5+12\frac { \sqrt { 5 } + 1 } { 2 }

Explanation

Solution

Let first term and common ratio of G.P. are respectively aa and rr, then under condition,

Tn=Tn1+Tn2T _ { n } = T _ { n - 1 } + T _ { n - 2 } \Rightarrow arn1=arn2+arn3a r ^ { n - 1 } = a r ^ { n - 2 } + a r ^ { n - 3 }

\Rightarrow arn1=arn1r1+arn1r2a r ^ { n - 1 } = a r ^ { n - 1 } r ^ { - 1 } + a r ^ { n - 1 } r ^ { - 2 }

\Rightarrow 1=1r+1r21 = \frac { 1 } { r } + \frac { 1 } { r ^ { 2 } } \Rightarrow r2r1=0r ^ { 2 } - r - 1 = 0

\Rightarrow r=1±1+42=1+52r = \frac { 1 \pm \sqrt { 1 + 4 } } { 2 } = \frac { 1 + \sqrt { 5 } } { 2 }

Taking only (+) sign (r>1)( \because r > 1 ) .