Solveeit Logo

Question

Question: If eqn $x^4-x^3+3x^2-7x+8=0$ has nots $\alpha, \beta, \gamma, \delta$ then find value of $(2-\alpha)...

If eqn x4x3+3x27x+8=0x^4-x^3+3x^2-7x+8=0 has nots α,β,γ,δ\alpha, \beta, \gamma, \delta then find value of (2α).(2β).(2γ).(2δ)(2-\alpha).(2-\beta).(2-\gamma).(2-\delta)

Answer

14

Explanation

Solution

Let the given polynomial be P(x)=x4x3+3x27x+8P(x) = x^4-x^3+3x^2-7x+8. Since α,β,γ,δ\alpha, \beta, \gamma, \delta are the roots of the equation P(x)=0P(x)=0, we can write the polynomial in factored form as: P(x)=(xα)(xβ)(xγ)(xδ)P(x) = (x-\alpha)(x-\beta)(x-\gamma)(x-\delta) The expression (2α).(2β).(2γ).(2δ)(2-\alpha).(2-\beta).(2-\gamma).(2-\delta) is equivalent to P(2)P(2). Substituting x=2x=2 into P(x)P(x): P(2)=(2)4(2)3+3(2)27(2)+8P(2) = (2)^4 - (2)^3 + 3(2)^2 - 7(2) + 8 P(2)=168+3(4)14+8P(2) = 16 - 8 + 3(4) - 14 + 8 P(2)=168+1214+8P(2) = 16 - 8 + 12 - 14 + 8 P(2)=14P(2) = 14