Solveeit Logo

Question

Physics Question on physical world

If energy(E)energy\,(E), velocity(V)velocity\,(V) and time(T)time\,(T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be

A

[EV2T2][EV^{-2}T^{-2}]

B

[E2V1T3][E^{-2}V^{-1}T^{-3}]

C

[EV2T1][EV^{-2}T^{-1}]

D

[EV1T2][EV^{-1}T^{-2}]

Answer

[EV2T2][EV^{-2}T^{-2}]

Explanation

Solution

Let S=kEaVbTcS=kE^aV^bT^c where kk is a dimensionless constant. Writing the dimensions on both sides, we get [M1L0T2]=[ML2T2]a[LT1]b[T]c[M^1L^0T^{-2}]=[ML^{2}T^{-2}]^a[LT^{-1}]^b[T]^c =[MaL2a+bT2ab+c]=[M^aL^{2a+b}T^{-2a-b+c}] Applying principle of homogeneity of dimensions, we get, a=1(i)a = 1\ldots (i) 2a+b=0(ii)2a+b=0\ldots(ii) 2ab+c=2(iii)-2a-b+c=-2\ldots (iii) Adding (ii)(ii) and (iii)(iii), we get c=2c=-2 From (ii)(ii), b=2a=2b = -2a = -2 S=kEV2T2\therefore S=kEV^{-2}\,T^{-2} or [S]=[EV2T2][S]=[EV^{-2}T^{-2}]