Solveeit Logo

Question

Physics Question on Electromagnetic waves

If electric field intensity of a uniform plane electromagnetic wave is given as
E=301.6sin(kzωt)a^x+452.4sin(kωωt)a^yVmE = -301.6 \sin(kz - \omega t) \hat{a}_x + 452.4 \sin(k\omega - \omega t) \hat{a}_y \, \frac{V}{m}
Then, magnetic intensity ‘H’ of this wave in Am–1 will be :
[Given : Speed of light in vacuum c = 3 × 108ms–1, Permeability of vacuum μ0=4π×107\mu_0 = 4\pi \times 10^{-7} NA–2]

A

0.8sin(kzωt)a^y+0.8sin(kωωt)a^x0.8\sin(kz - \omega t)\hat{a}_y + 0.8\sin(k\omega - \omega t)\hat{a}_x

B

0.1×106sin(kzωt)a^y+1.5×106sin(kωωt)a^x0.1 \times 10^{-6} \sin(kz - \omega t) \hat{a}_y + 1.5 \times 10^{-6} \sin(k\omega - \omega t) \hat{a}_x

C

0.8sin(kzωt)a^y1.2sin(kωωt)a^z-0.8 \sin(kz - \omega t)\hat{a}_y - 1.2 \sin(k\omega - \omega t)\hat{a}_z

D

0.1×106sin(kzωt)a^y1.5×106sin(kωωt)a^x-0.1 \times 10^{-6} \sin(kz - \omega t) \hat{a}_y - 1.5 \times 10^{-6} \sin(k\omega - \omega t) \hat{a}_x

Answer

0.8sin(kzωt)a^y1.2sin(kωωt)a^z-0.8 \sin(kz - \omega t)\hat{a}_y - 1.2 \sin(k\omega - \omega t)\hat{a}_z

Explanation

Solution

We know,B×C=E\mathbf{\overrightarrow{B}} \times \mathbf{\overrightarrow{C}} = \mathbf{\overrightarrow{E}}
Taking cross product of vector C both the sides-
C×(B×C)=C×E\mathbf{\overrightarrow{C}} \times (\mathbf{\overrightarrow{B}} \times \mathbf{\overrightarrow{C}}) = \mathbf{\overrightarrow{C}} \times \mathbf{\overrightarrow{E}}
So
B=C×EC2\overrightarrow{B} = \frac{\mathbf{\overrightarrow{C}} \times \mathbf{\overrightarrow{E}}}{C^2}
C=Ck^\mathbf{\overrightarrow{C}} = C \mathbf{\hat{k}}
E=301.6sin(Kzωt)a^x+452.4sin(kzωt)a^y\mathbf{\overrightarrow{E}} = -301.6 \sin(Kz - \omega t) \hat{a}_x + 452.4 \sin(kz - \omega t) \hat{a}_y
and
H=Bμ0\mathbf{\overrightarrow{H}} = \frac{\mathbf{\overrightarrow{B}}}{\mu_0}
On solving
H=0.8sin(kzωt)a^y1.2sin(kωωt)a^z\mathbf{\overrightarrow{H}} = -0.8 \sin(kz - \omega t) \hat{a}_y - 1.2 \sin(k\omega - \omega t) \hat{a}_z