Solveeit Logo

Question

Mathematics Question on Vector Algebra

If either vector a=0  or  b=0\vec {a}=\vec{0}\space or\space \vec{b}=\vec{0}, then a.b=0\vec{a}.\vec{b}=0.But the converse need not be true.Justify your answer with an example.

Answer

Consider a=2i^+4j^+3k^  and  b=3i^+3j^k^.\vec{a}=2\hat{i}+4\hat{j}+3\hat{k}\space and\space \vec{b}=3\hat{i}+3\hat{j}-\hat{k}.
Then,
a.b=2.3+4.3+3(6)=6+1218=0\vec{a}.\vec{b}=2.3+4.3+3(-6)=6+12-18=0
We now observe that:
a=22+42+32=29|\vec{a}|=\sqrt{2^{2}+4^{2}+3^{2}}=\sqrt{29}
a0∴\vec{a}\ne\vec{0}
b=32+32+(6)2=54|\vec{b}|=\sqrt{3^{2}+3^{2}+(-6)^{2}}=\sqrt{54}
b0∴\vec{b}\ne\vec{0}
Hence,the converse of the given statement need not be true.