Solveeit Logo

Question

Mathematics Question on Vector Algebra

If either a=0\vec{a}=0 or b=0\vec{b}=0,then a×b=0\vec{a}\times\vec{b}=0. Is the converse true? Justify your answer with an example.

Answer

Take any parallel non-zero vectors so that a×b=0\vec{a}\times\vec{b}=0
Let a=2i^+3j^+4k^,b=4i^+6j^+8k^\vec{a}=2\hat{i}+3\hat{j}+4\hat{k},\vec{b}=4\hat{i}+6\hat{j}+8\hat{k}.
Then,
\vec{a}\times\vec{b}=$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ 2 & 3 & 4 \\\4&6&8\end{vmatrix}$$=\hat{i}(24-24)-\hat{j}(16-16)+\hat{k}(12-12)=0\hat{i}+0\hat{j}+0\hat{k}=\vec{0}
It can be observed that:
a=22+32+42=29|\vec{a}|=\sqrt{22+32+42}=\sqrt{29}
a0∴\vec{a}\ne\vec{0}
b=42+62+82=116|\vec{b}|=\sqrt{42+62+82}=\sqrt{116}
b0∴\vec{b}\ne\vec{0}
Hence,the converse of the given statement need not to be true.