Question
Mathematics Question on Vector Algebra
If either a=0 or b=0,then a×b=0. Is the converse true? Justify your answer with an example.
Answer
Take any parallel non-zero vectors so that a×b=0
Let a=2i^+3j^+4k^,b=4i^+6j^+8k^.
Then,
\vec{a}\times\vec{b}=$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ 2 & 3 & 4 \\\4&6&8\end{vmatrix}$$=\hat{i}(24-24)-\hat{j}(16-16)+\hat{k}(12-12)=0\hat{i}+0\hat{j}+0\hat{k}=\vec{0}
It can be observed that:
∣a∣=22+32+42=29
∴a=0
∣b∣=42+62+82=116
∴b=0
Hence,the converse of the given statement need not to be true.