Solveeit Logo

Question

Physics Question on Semiconductor electronics: materials, devices and simple circuits

If each diode in figure has a forward bias resistance of 25Ω25\,\Omega and infinite resistance in reverse bias, The values of the current

A

I2=0.40A,I4=0.025AI_2 = 0.40 \,A, I_4 = 0.025 \,A

B

I2=0.25A,I4=0.20AI_2 = 0.25 \,A, I_4 = 0.20 \,A

C

I1=0.05A,I3=0.02A I_1 = 0.05 \,A, I_3 = 0.02\, A

D

I2=I4=0.025AI_2 = I_4 = 0.025 \,A

Answer

I2=I4=0.025AI_2 = I_4 = 0.025 \,A

Explanation

Solution

Let RR be the effective resistance of the circuit, then R=(RABREF)+25R =\left( R_{AB}\left|\right|R_{EF}\right) +25 RAB=125+25=150Ω;R_{AB} = 125 + 25 = 150 \Omega; =125+25=150Ω=125 +25 = 150 \Omega R=25+1502\therefore R =25 + \frac{150}{2} =100Ω = 100 \,\Omega Since diode in the branch CDCD is reverse biased, I3=0I_3 = 0. Current, I1=5100I_1 = \frac{5}{100} =0.05A= 0.05\, A According to Kirchhoff??, current rule, I1=I2+I3+I4I_1 = I_2 + I_3 + I_4 or I2+I4=I1=0.05AI_2 + I_4 = I_1 = 0.05 \,A RAB=REF\because R_{AB} = R_{EF}, so, I4=I2I_{4} = I_{2} 2I4=2I2=0.05; 2I_{4} = 2I_{2} = 0.05 ; I4=I4=0.052I_{4} = I_{4} = \frac{0.05}{2} =0.025A = 0.025\, A