Solveeit Logo

Question

Mathematics Question on Differential Calculus

If ey=xxe^y = x^x, then which of the following is true?

A

yd2ydx2=1y \frac{d^2y}{dx^2} = 1

B

d2ydx2y=0\frac{d^2y}{dx^2} - y = 0

C

d2ydx2dydx=0\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0

D

yd2ydx2dydx+1=0y \frac{d^2y}{dx^2} - \frac{dy}{dx} + 1 = 0

Answer

yd2ydx2dydx+1=0y \frac{d^2y}{dx^2} - \frac{dy}{dx} + 1 = 0

Explanation

Solution

We start with the given equation:

ey=xxe^y = x^x.

Take the natural logarithm of both sides:

y=ln(xx)y = \ln(x^x).

Simplify using logarithmic properties:

y=xln(x)y = x \ln(x).

Differentiate yy with respect to xx:

dydx=ln(x)+1\frac{dy}{dx} = \ln(x) + 1.

Differentiate again to find the second derivative:

d2ydx2=1x\frac{d^2y}{dx^2} = \frac{1}{x}.

Substitute dydx\frac{dy}{dx} and d2ydx2\frac{d^2y}{dx^2} into the given options. For option (4):

yd2ydx2dydx+1=(xln(x)1x)(ln(x)+1)+1y \frac{d^2y}{dx^2} - \frac{dy}{dx} + 1 = \left( x \ln(x) \cdot \frac{1}{x} \right) - (\ln(x) + 1) + 1.

Simplify:

ln(x)(ln(x)+1)+1=0\ln(x) - (\ln(x) + 1) + 1 = 0.

Thus, option (4) satisfies the equation.