Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If ey(x+1)=1e^y(x+1)=1,show that d2ydx2=(dydx)2\frac{d^2y}{dx^2}=(\frac{dy}{dx})^2

Answer

The given relationship is,ey(x+1)=1e^y(x+1)=1
ey(x+1)=1e^y(x+1)=1
ey=1x+1⇒e^y=\frac{1}{x+1}
Taking logarithm on both the sides, we obtain
y=log1(x+1)y=log\frac{1}{(x+1)}
Differentiating this relationship with respect to xx, we obtain
dydx=(x+1)ddx(1x+1)=(x+1).1(x+1)2=1(x+1)\frac{dy}{dx}=(x+1)\frac{d}{dx}(\frac{1}{x+1})=(x+1).\frac{-1}{(x+1)^2}=\frac{-1}{(x+1)}
∴\frac{d^2y}{dx^2}=\frac{-d}{dx}(\frac{1}{(x+1)})=-(\frac{-1}{(x+1)^2})$$=\frac{1}{(x+1)^2}
d2ydx2=(1(x+1))2⇒\frac{d^2y}{dx^2}=(\frac{-1}{(x+1)})^2
d2ydx2=(dydx)2\frac{d^2y}{dx^2}=(\frac{dy}{dx})^2
Hence, proved.