Solveeit Logo

Question

Mathematics Question on Relations and functions

If ex=y+1+y2e^x = y + \sqrt{ 1 + y^2} , then the value of y is

A

12(ex+ex)\frac{1}{2} (e^x + e^{-x})

B

12(exex)\frac{1}{2} (e^x - e^{-x})

C

exex2e^x - e^{\frac{-x}{2}}

D

ex+ex2e^x + e^{\frac{-x}{2}}

Answer

12(exex)\frac{1}{2} (e^x - e^{-x})

Explanation

Solution

Given ex=y+1+y2e^{x} = y + \sqrt{1 +y^{2}} exy=1+y2 \Rightarrow e^{x} - y = \sqrt{1 +y^{2}} Squaring both side, we have e2x+y22exy=1+y2 e^{2x } + y^{2} - 2e^{x} y = 1 +y^{2} 2exy=e2x1 \Rightarrow 2e^{x} y =e^{2x} - 1 y=e2x12exy=12[exex] \Rightarrow y = \frac{e^{2x} - 1 }{2e^{x} } \Rightarrow y = \frac{1}{2} \left[e^{x} - e^{-x}\right]