Solveeit Logo

Question

Mathematics Question on solution of system of linear inequalities in two variables

if ex=y+1+y2,e^x \, =\, y+ \sqrt{1+y^2}, then the value of y is

A

12(ex+ex)\frac{1}{2}(e^x+e^{-x})

B

12(exex)\frac{1}{2}(e^x - e^{-x})

C

exex2e^x \, - \, e ^{\frac{-x}{2}}

D

ex+ex2e^x \, + \, e ^{\frac{-x}{2}}

Answer

12(exex)\frac{1}{2}(e^x - e^{-x})

Explanation

Solution

Given ex=y+1+y2e^x =\, y + \sqrt{1+y^2}
exy=1+y2\Rightarrow \, \, e^x \, - y = \sqrt{1+y^2}
Squaring both side, we have
e2x+y22exy=1+y2e^{2x} + y^2 - 2e^xy \, = 1+y^2
2exy=e2x1\Rightarrow 2e^{x}y=e^{2x}-1
y=e2x12ex\Rightarrow \, \, y=\frac{e^{2x}-1}{2e^x}

y=12[exex]\Rightarrow \, y=\frac{1}{2} \, [e^x - e^{-x}]

So, the correct answer is (B): y=12[exex]\Rightarrow \, y=\frac{1}{2} \, [e^x - e^{-x}]