Solveeit Logo

Question

Question: If \(e = l\bar{i} + m\bar{j} + n\bar{k}\)is a unit vector, the maximum value of \(lm + mn + nl\)is...

If e=liˉ+mjˉ+nkˉe = l\bar{i} + m\bar{j} + n\bar{k}is a unit vector, the maximum value of lm+mn+nllm + mn + nlis

A

–1/2

B

0

C

1

D

3/2

Answer

1

Explanation

Solution

Since A.MG.M.A.M \geq G.M.,

l2+m22lm;m2+n22mn;n2+l22ln.\frac{l^{2} + m^{2}}{2} \geq lm;\frac{m^{2} + n^{2}}{2} \geq mn;\frac{n^{2} + l^{2}}{2} \geq ln.

Adding these three inequalities,

l2+m2+n2lm+mn+nll^{2} + m^{2} + n^{2} \geq lm + mn + nl.

But l2+m2+n2=1l^{2} + m^{2} + n^{2} = 1

Hence lm+mn+nl1.lm + mn + nl \leq 1. Maximum value = 1.