Solveeit Logo

Question

Question: If e is the eccentricity of the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\)and \(\th...

If e is the eccentricity of the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1and θ\thetais angle between the asymptotes, then cosθ2=\cos\frac{\theta}{2} =

A

1ee\frac{1 - e}{e}

B

1e1\frac{1}{e} - 1

C

1e\frac{1}{e}

D

None of these

Answer

1e\frac{1}{e}

Explanation

Solution

b2=a2(e21)b^{2} = a^{2}\left( e^{2} - 1 \right)……………..(1)

since angle between asymptotes

= 2tan1(ba)2\tan^{- 1}\left( \frac{b}{a} \right) orθ=2tan1(ba)\theta = 2\tan^{- 1}\left( \frac{b}{a} \right)

tanθ2=ba\tan\frac{\theta}{2} = \frac{b}{a}

cosθ2=aa2+b2\cos\frac{\theta}{2} = \frac{a}{\sqrt{a^{2} + b^{2}}}= 11+(ba)2\frac{1}{\sqrt{1 + \left( \frac{b}{a} \right)^{2}}}

= 1e2=1e\frac{1}{\sqrt{e^{2}}} = \frac{1}{e}