Solveeit Logo

Question

Question: If e is the eccentricity of \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) and θ be the angle bet...

If e is the eccentricity of x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 and θ be the angle between the asymptotes then sec θ/2 equals

A

e2

B

1/e

C

2e

D

e

Answer

e

Explanation

Solution

Equation of asymptotes to x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 are given by

xa±yb=0\frac{x}{a} \pm \frac{y}{b} = 0

xa+yb=06mu6muandxayb=0\frac{x}{a} + \frac{y}{b} = 0\mspace{6mu}\mspace{6mu} and\frac{x}{a} - \frac{y}{b} = 0

yb=1ax\frac{y}{b} = - \frac{1}{a}x

y = -bax\frac{b}{a}x ∴ m1 = b/a

Similarly y = bxa\frac{bx}{a} ∴ m2 = b/a

Now θ = 2tan-1(b/a)

∴ tanθ/2 = b/a ⇒ tan2θ/2 = b2a2=e21\frac{b^{2}}{a^{2}} = e^{2} - 1

∴ sec2θ/2 = e2 ∴ secθ/2 = e