Solveeit Logo

Question

Physics Question on Units and measurement

If E=E= energy, G=G= gravitational constant, I=I= impulse and M=M= mass, then dimensions of GIM2E2\frac{G I M^{2}}{E^{2}} are same as that of

A

time

B

mass

C

length

D

force

Answer

time

Explanation

Solution

Dimensions of E=[ML2T2]E=\left[M L^{2}\, T^{-2}\right]
Dimensions of G=[M1L3T2]G=\left[M^{-1} \,L^{3} \,T^{-2}\right]
Dimensions of I=[MLT1]I=\left[M L\, T^{-1}\right]
and dimensions of M=[M]M=[M]
So, dimensions of GIM2E2\frac{G IM ^{2}}{E^{2}}
=[G][I][M2][E2]=\frac{[G][I]\left[M^{2}\right]}{\left[E^{2}\right]}
Substituting the dimensions for each physical quantity, we get
Dimensions of GIM2E2\frac{G I M^{2}}{E^{2}}
=[M1L3T2][MLT1][M2][ML2T2]2=\frac{\left[M^{-1} \,L^{3} \,T^{-2}\right]\left[M L\, T^{-1}\right]\left[M^{2}\right]}{\left[M L^{2}\, T^{-2}\right]^{2}}
=[T]=[T]
== Dimensions of time