Solveeit Logo

Question

Question: If \(E{{{}^\circ }_{F{{e}^{+2}},Fe}}\) is \({{x}_{1}}\) , \[E{{{}^\circ }_{F{{e}^{+3}},Fe}}\] is \({...

If EFe+2,FeE{{{}^\circ }_{F{{e}^{+2}},Fe}} is x1{{x}_{1}} , EFe+3,FeE{{{}^\circ }_{F{{e}^{+3}},Fe}} is x2{{x}_{2}} , then EFe+3,Fe+2E{{{}^\circ }_{F{{e}^{+3}},F{{e}^{+2}}}} will be
A. 3x22x13{{x}_{2}}-2{{x}_{1}}
B. x2x1{{x}_{2}}-{{x}_{1}}
C. x2+x1{{x}_{2}}+{{x}_{1}}
D. 2x13x22{{x}_{1}}-3{{x}_{2}}

Explanation

Solution

Standard cell potential is defined as the potential of the cell under standard conditions, that are, concentrations of one mole per litre, pressure of 1atm1\,atm at 25C25{}^\circ C . To get the overall standard cell potential, the potentials of half – cells are added.

Complete step by step answer:
Here, it is given that EFe+2,FeE{{{}^\circ }_{F{{e}^{+2}},Fe}} is x1{{x}_{1}} and EFe+3,FeE{{{}^\circ }_{F{{e}^{+3}},Fe}} is x2{{x}_{2}}
So, firstly we will write the chemical reaction as follows:
Fe2++2eFeF{{e}^{2+}}+2{{e}^{-}}\to Fe EFe+2,Fe=x1E{{{}^\circ }_{F{{e}^{+2}},Fe}}={{x}_{1}} (1)-(1)
Fe3++3eFeF{{e}^{3+}}+3{{e}^{-}}\to Fe EFe+3,Fe=x2E{{{}^\circ }_{F{{e}^{+3}},Fe}}={{x}_{2}} (2)-(2)
Now, we will reverse the (1)(1) equation, we will get
FeFe2++2eFe\to F{{e}^{2+}}+2e EFe,Fe+2=x1E{{{}^\circ }_{Fe,F{{e}^{+2}}}}=-{{x}_{1}}
And now we will write both the equation (1)(1) and (2)(2)
FeFe2++2eFe\to F{{e}^{2+}}+2{{e}^{-}} EFe,Fe+2=x1E{{{}^\circ }_{Fe,F{{e}^{+2}}}}=-{{x}_{1}}
Fe3++3eFeF{{e}^{3+}}+3{{e}^{-}}\to Fe EFe+3,Fe=x2E{{{}^\circ }_{F{{e}^{+3}},Fe}}={{x}_{2}}
Solving both the equations, we get,
Fe3++eFe2+F{{e}^{3+}}+{{e}^{-}}\to F{{e}^{2+}}
As we know EE{}^\circ is an intensive property, therefore,
ΔG=ΔG1+ΔG2\Delta G{}^\circ =\Delta G{{{}^\circ }_{1}}+\Delta G{{{}^\circ }_{2}}
Also , ΔG=nFE\Delta G{}^\circ =-nFE{}^\circ
nFE=n1FE1nFE2-nFE{}^\circ =-{{n}_{1}}FE{{{}^\circ }_{1}}-nFE{{{}^\circ }_{2}}
nFE=n1FE1+nFE2\Rightarrow nFE{}^\circ ={{n}_{1}}FE{{{}^\circ }_{1}}+nFE{{{}^\circ }_{2}}
on solving , we get
E=n1E1+nE2n\Rightarrow E{}^\circ =\dfrac{{{n}_{1}}E{{{}^\circ }_{1}}+nE{{{}^\circ }_{2}}}{n}
where, GG{}^\circ is the standard Gibbs free energy,
EE{}^\circ is the standard reduction potential,
FF is the Faraday’s constant, and,
nn is the number of electrons transferred.
Now, we will substitute the above values in the above formula.
E=2×x1+3×x21E{}^\circ =\dfrac{-2\times {{x}_{1}}+3\times {{x}_{2}}}{1}
E=2x1+3x23x22x1\Rightarrow E{}^\circ =-2{{x}_{1}}+3{{x}_{2}}\Rightarrow 3{{x}_{2}}-2{{x}_{1}}

So, the correct answer is Option A.

Note: 1.ΔG\Delta G{}^\circ is defined as the energy change under standard conditions like pressure at 1atm1atm .
2.ΔG\Delta G is the Gibbs free energy which is used for the measurement of energy content. If ΔG\Delta G is less than zero then, it gives an exothermic reaction. If ΔG\Delta G is more than zero, then it gives an endothermic reaction.
3.Standard cell potential (E)(E{}^\circ ) is defined as the potential of a cell under concentration of 11mole per litre and pressure of 1atm1atmat 25C25{}^\circ C .
4.Faraday’s constant is denoted with the symbol FF and is defined as change in coulombs. One Faraday constant is equal to 9650096500 Cmol1Cmo{{l}^{-1}}.
1F=965001F=96500 Cmol1Cmo{{l}^{-1}}
Here, nn is the number of electrons transferred in a reaction.
5.The relationship between ΔG,ΔE,n,F\Delta G{}^\circ ,\Delta E{}^\circ ,n,F is:
ΔG=nFE\Delta G{}^\circ =-nFE{}^\circ
When we reverse a chemical reaction, its EE{}^\circ value gets opposite of the previous EE{}^\circ value given.