Solveeit Logo

Question

Mathematics Question on Axiomatic Approach to Probability

If E and F are events such that P(E)=14\frac{1}{4} ,P(F)=12\frac{ 1}{2} and P(E and F)=18\frac{1}{8} ,find: (i) P(E or F),(ii) P(not E and not F).

Answer

Here, P(E) =14\frac{1}{4} , P(F) =12\frac{1}{2} , and P(E and F) =18\frac{1}{8}
(i) We know that P(E or F) = P(E) + P(F) - P(E and F)
∴P(E or F) =14+1218=2+418=58\frac{1}{4}+\frac{1}{2}-\frac{1}{8}=\frac{2+4-1}{8}=\frac{5}{8}

(ii) From (i), P(E or F) = P (E U F) =58\frac{5}{8}
We have (E'UF)'=(E∩F') [By De Morgan's law]
∴P(E'∩F')=P(EUF)'
Now,P(EUF)'=1-P(EUF)= 158=381-\frac{5}{8}=\frac{3}{8}
∴P(E'∩F')= 38\frac{3}{8}
Thus,P(not E and not F)= 38\frac{3}{8}