Solveeit Logo

Question

Mathematics Question on Axiomatic Approach to Probability

If E and F are events such that P(E)=14,P(F)=12P(E)=\frac{1}{4},P(F)=\frac{ 1}{2} and P(E and F)=18=\frac{1}{8}, find (i) P(E or F), (ii) P(not E and not F).

Answer

Here, P(E)=14,P(F)=12P(E) =\frac{1}{4} , P(F) =\frac{1}{2} , and P(EP(E andF)=18F) =\frac{1}{8}

(i) We know thatP(EP(E or F)=P(E)+P(F)\-P(EF) = P(E) + P(F) \- P(E and F)F)

P(E∴P(E or F)=14+1218=2+418=58F) =\frac{1}{4}+\frac{1}{2}-\frac{1}{8}=2+4-\frac{1}{8}=\frac{5}{8}

(ii) From (i) , P(E orF) = P (E U F)=58=\frac{5}{8}

We have (EUF)=(E∩F) [By De Morgans law]

∴P(E∩F)=P(EUF)

Now, P(EUF)=1-P(EUF)=158=38=1-\frac{5}{8}=\frac{3}{8}

∴P(E∩F)=38=\frac{3}{8}

Thus, P(not E and not F)=38=\frac{3}{8}