Solveeit Logo

Question

Mathematics Question on Conditional Probability

If EE and FF are events such that 0<P(F)<10 < P(F) < 1, then

A

P(EF)+P(EˉF)=1P\left(E\,|\,F\right) + P\left(\bar{E}\,| \,F\right) = 1

B

P(EF)+P(EFˉ)=1P\left(E\,|\,F\right) + P\left(E\,| \,\bar{F}\right) = 1

C

P(EˉF)+P(EFˉ)=1P\left(\bar{E}\,|\,F\right) + P\left(E\,| \,\bar{F}\right) = 1

D

P(EFˉ)+P(EˉFˉ)=0P\left(E\,|\,\bar{F}\right) + P\left(\bar{E}\,| \,\bar{F}\right) = 0

Answer

P(EF)+P(EˉF)=1P\left(E\,|\,F\right) + P\left(\bar{E}\,| \,F\right) = 1

Explanation

Solution

P(EF)+P(EˉF)P\left(E\,|\,F\right) + P\left(\bar{E}\,| \,F\right) =P(EF)+P(EˉF)P(F)= \frac{P\left(E\, \cap \,F\right)+P\left(\bar{E}\, \cap\, F\right)}{P\left(F\right)} =P((EEˉ)F)P(F)= \frac{P\left(\left(E \,\cup\, \bar{E}\right)\,\cap \,F\right)}{P\left(F\right)} =P(F)P(F)=1= \frac{P\left(F\right)}{P\left(F\right)} = 1