Solveeit Logo

Question

Question: If e and e¢ are the eccentricities of the ellipse 5x<sup>2</sup> + 9y<sup>2</sup> = 45 and the hyper...

If e and e¢ are the eccentricities of the ellipse 5x2 + 9y2 = 45 and the hyperbola 5x2 –4y2 = 45 respectively, then ee¢ is equal to

A

1

B

4

C

5

D

9

Answer

1

Explanation

Solution

5x2 + 9y2 = 45 ….(1)

x29\frac{x^{2}}{9}+ y25\frac{y^{2}}{5}= 1 ̃ e =1b2a2\sqrt{1 - \frac{b^{2}}{a^{2}}}=159\sqrt{1 - \frac{5}{9}}=23\frac{2}{3}

& 5x2 – 4y2 = 45

x29\frac{x^{2}}{9}y2(45/4)\frac{y^{2}}{(45/4)}= 1 ̃ e¢ =1+b2a2\sqrt{1 + \frac{b^{2}}{a^{2}}}

=1+454×9\sqrt{1 + \frac{45}{4 \times 9}}=814×9\sqrt{\frac{81}{4 \times 9}}= 23\frac{2}{3}

\ ee' = 1