Solveeit Logo

Question

Mathematics Question on Hyperbola

If ee and ee^{'} are the eccentricities of hyperbolas x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 and its conjugate hyperbola, then the value of 1e2+1e2\frac{1}{e^{2}}+\frac{1}{e^{'2}} is

A

0

B

1

C

2

D

None of These

Answer

1

Explanation

Solution

If e is eccentricity ff hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, then e=1+b2a2e=\sqrt{1+\frac{b^{2}}{a^{2}}}.
Since, e is eccentricity of hyperbola
x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
e=1+b2a2\therefore e=\sqrt{1+\frac{b^{2}}{a^{2}}}
e2=1+b2a2=a2+b2a2\Rightarrow e^{2}=1+\frac{b^{2}}{a^{2}}=\frac{a^{2}+b^{2}}{a^{2}}
and e is eccentricity of hyperbola x2b2y2a2=1\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=1
e=1+a2b2\therefore e'=\sqrt{1+\frac{a^{2}}{b^{2}}}
(e)2=1+a2b2=a2+b2b2\Rightarrow(e')^{2}=1+\frac{a^{2}}{b^{2}}=\frac{a^{2}+b^{2}}{b^{2}}
1e2+1(e)2=a2a2+b2+b2a2+b2\therefore \frac{1}{e^{2}}+\frac{1}{(e)^{2}}=\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}
=a2+b2a2+b2=1=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1
Therefore, The Correct Option is (B): 1