Solveeit Logo

Question

Mathematics Question on Conic sections

If e1e_1 is the eccentricity of the ellipse x216+y225=1\frac {x^2}{16}+\frac{y^2}{25}=1 and e2e_2 is the eccentricity of the hyperbola passing through the foci of the ellipse and e1e2=1e_1e_2=1 then equation of the hyperbola is

A

x29y216=1\frac {x^2}{9}-\frac {y^2}{16}=1

B

x216y29=1\frac {x^2}{16}-\frac {y^2}{9}=-1

C

x29y225=1\frac {x^2}{9}-\frac {y^2}{25}=1

D

None of these

Answer

x216y29=1\frac {x^2}{16}-\frac {y^2}{9}=-1

Explanation

Solution

The eccentricity of x216+y225=1\frac {x^2}{16}+\frac {y^2}{25}=1 is
e1=(11625)=35e_1=(\sqrt{1-\frac{16}{25}})=\frac{3}{5}
e2=53\therefore e_2=\frac{5}{3} [e1e2=1][\because e_1e_2=1]
\Rightarrow Foci of ellipse (0,±3)(0,\pm 3)
\Rightarrow Equation of hyperbola is x216y29=1.\frac{x^2}{16}-\frac{y^2}{9}=-1.