Solveeit Logo

Question

Question: If \[{{E}_{1}}\] and \[{{E}_{2}}\] are two mutually exclusive events of an experiment with \[P\left(...

If E1{{E}_{1}} and E2{{E}_{2}} are two mutually exclusive events of an experiment with P(E2)=0.6=P(E1E2)P\left( \overline{{{E}_{2}}} \right)=0.6=P\left( {{E}_{1}}\cup {{E}_{2}} \right) then P(E1)P\left( {{E}_{1}} \right) is equal to
1. 0.1
2. 0.3
3. 0.4
4. 0.2

Explanation

Solution

In this problem, we are given If E1{{E}_{1}} and E2{{E}_{2}} are two mutually exclusive events of an experiment with P(E2)=0.6=P(E1E2)P\left( \overline{{{E}_{2}}} \right)=0.6=P\left( {{E}_{1}}\cup {{E}_{2}} \right) then we have to find the value of P(E1)P\left( {{E}_{1}} \right). We know that if two events are mutually exclusive, then P(E1E2)=0P\left( {{E}_{1}}\cap {{E}_{2}} \right)=0. We can find the value of P(E2)P\left( {{E}_{2}} \right) from the given data, we can then substitute the values we get in the formula P(E1E2)=P(E1)+P(E2)P(E1E2)P\left( {{E}_{1}}\cup {{E}_{2}} \right)=P\left( {{E}_{1}} \right)+P\left( {{E}_{2}} \right)-P\left( {{E}_{1}}\cap {{E}_{2}} \right) and find the required value.

Complete step by step answer:
Here we have to find the value of P(E1)P\left( {{E}_{1}} \right).
We are given E1{{E}_{1}} and E2{{E}_{2}} are two mutually exclusive events of an experiment and P(E2)=0.6P\left( \overline{{{E}_{2}}} \right)=0.6, P(E1E2)=0.6P\left( {{E}_{1}}\cup {{E}_{2}} \right)=0.6 …….. (1)
We know that if two events are mutually exclusive, then
P(E1E2)=0P\left( {{E}_{1}}\cap {{E}_{2}} \right)=0 …… (2)
We know that,
P(E2)=1P(E2)P\left( {{E}_{2}} \right)=1-P\left( \overline{{{E}_{2}}} \right)
We can now substitute the given value, we get
P(E2)=10.6=0.4\Rightarrow P\left( {{E}_{2}} \right)=1-0.6=0.4…….. (3)
We know that,
P(E1E2)=P(E1)+P(E2)P(E1E2)P\left( {{E}_{1}}\cup {{E}_{2}} \right)=P\left( {{E}_{1}} \right)+P\left( {{E}_{2}} \right)-P\left( {{E}_{1}}\cap {{E}_{2}} \right)
We can now substitute (1), (2), (3) in the above formula, we get
0.6=P(E1)+0.40\Rightarrow 0.6=P\left( {{E}_{1}} \right)+0.4-0
We can now simplify and solve the above step, we get
P(E1)=0.60.4=0.2\Rightarrow P\left( {{E}_{1}} \right)=0.6-0.4=0.2

So, the correct answer is “Option 4”.

Note: We should always remember that if the given two events are mutually exclusive events then P(E1E2)=0P\left( {{E}_{1}}\cap {{E}_{2}} \right)=0, where the two events do not occur at same time and only one event can occur. We should also remember that P(E1E2)=P(E1)+P(E2)P(E1E2)P\left( {{E}_{1}}\cup {{E}_{2}} \right)=P\left( {{E}_{1}} \right)+P\left( {{E}_{2}} \right)-P\left( {{E}_{1}}\cap {{E}_{2}} \right). We should also remember the formula P(E2)=1P(E2)P\left( {{E}_{2}} \right)=1-P\left( \overline{{{E}_{2}}} \right). We should make the simplifications in a correct order to get the required answer.