Solveeit Logo

Question

Question: If \[{e_1}\] and \[{e_2}\] are the eccentricities of a hyperbola and its conjugate, then \[e_1^2 + e...

If e1{e_1} and e2{e_2} are the eccentricities of a hyperbola and its conjugate, then e12+e22e_1^2 + e_2^2 will be
(a) 1
(b) e12e22e_1^2e_2^2
(c) 0
(d) 1e12+1e22\dfrac{1}{{e_1^2}} + \dfrac{1}{{e_2^2}}

Explanation

Solution

Here, we need to find the value of e12+e22e_1^2 + e_2^2. Using the equations of the hyperbola and its conjugate, we can find the eccentricities and simplify the expression e12+e22e_1^2 + e_2^2. We can then compare the expression with the options given to find the correct option.
Formula Used: We will use the formulae eccentricity of hyperbola, e=1+b2a2e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} , eccentricity of conjugate hyperbola, e=1+a2b2e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} , where ee is the eccentricity, aa is the length of semi- major axes and bb is the length of semi-minor axes.

Complete step by step solution:
We know that the equation of a hyperbola is given by x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1.
The eccentricity of a hyperbola ee is given by the formula e=1+b2a2e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} .
Therefore, we can write e1{e_1} as
e1=1+b2a2{e_1} = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}}
Squaring both sides, we get
e12=1+b2a2\Rightarrow e_1^2 = 1 + \dfrac{{{b^2}}}{{{a^2}}}
The equation of a conjugate hyperbola is given by x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = - 1.
The eccentricity of a conjugate hyperbola ee is given by the formula e=1+a2b2e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} .
Therefore, we can write e2{e_2} as
e2=1+a2b2{e_2} = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}}
Squaring both sides, we get
e22=1+a2b2\Rightarrow e_2^2 = 1 + \dfrac{{{a^2}}}{{{b^2}}}
Now, we will substitute the values of the squares of the eccentricities in the expression e12+e22e_1^2 + e_2^2.
Substituting 1+b2a21 + \dfrac{{{b^2}}}{{{a^2}}} for e12e_1^2 and 1+a2b21 + \dfrac{{{a^2}}}{{{b^2}}} for e22e_2^2 in the expression, we get
e12+e22=1+b2a2+1+a2b2 e12+e22=a2b2+b2a2+2\begin{array}{l} \Rightarrow e_1^2 + e_2^2 = 1 + \dfrac{{{b^2}}}{{{a^2}}} + 1 + \dfrac{{{a^2}}}{{{b^2}}}\\\ \Rightarrow e_1^2 + e_2^2 = \dfrac{{{a^2}}}{{{b^2}}} + \dfrac{{{b^2}}}{{{a^2}}} + 2\end{array}
Next, we will verify the given options one by one to find out the answer.
We know that a2{a^2} and b2{b^2} are greater than or equal to 0.
Thus, the expression e12+e22=a2b2+b2a2+2e_1^2 + e_2^2 = \dfrac{{{a^2}}}{{{b^2}}} + \dfrac{{{b^2}}}{{{a^2}}} + 2 is greater than 2.
Therefore, the expression cannot be equal to 1 or 0. Options (a) and (c) are incorrect.
Now, we will simplify the expression in option (b) and compare it to the value of the expression e12+e22e_1^2 + e_2^2.
Substituting 1+b2a21 + \dfrac{{{b^2}}}{{{a^2}}} for e12e_1^2 and 1+a2b21 + \dfrac{{{a^2}}}{{{b^2}}} for e22e_2^2 in the expression e12e22e_1^2e_2^2, we get
e12e22=(1+b2a2)(1+a2b2)e_1^2e_2^2 = \left( {1 + \dfrac{{{b^2}}}{{{a^2}}}} \right)\left( {1 + \dfrac{{{a^2}}}{{{b^2}}}} \right)
Using the distributive property of multiplication, we get
e12e22=1+b2a2+a2b2+b2a2a2b2 e12e22=1+b2a2+a2b2+1 e12e22=a2b2+b2a2+2\begin{array}{l} \Rightarrow e_1^2e_2^2 = 1 + \dfrac{{{b^2}}}{{{a^2}}} + \dfrac{{{a^2}}}{{{b^2}}} + \dfrac{{{b^2}}}{{{a^2}}} \cdot \dfrac{{{a^2}}}{{{b^2}}}\\\ \Rightarrow e_1^2e_2^2 = 1 + \dfrac{{{b^2}}}{{{a^2}}} + \dfrac{{{a^2}}}{{{b^2}}} + 1\\\ \Rightarrow e_1^2e_2^2 = \dfrac{{{a^2}}}{{{b^2}}} + \dfrac{{{b^2}}}{{{a^2}}} + 2\end{array}
This is equal to the simplified value of the expression e12+e22e_1^2 + e_2^2.

\therefore We get the correct option as option (c).

Note:
Hyperbola is a conic section defined as a plain curve such that the distance between two points is always constant. For hyperbola, eccentricity is defined as the ratio of the distance from focus to the vertices. Eccentricity of the hyperbola is greater than 1.