Solveeit Logo

Question

Question: If \({{e}_{1}}\) and \({{e}_{2}}\) are the eccentricities of a hyperbola \(3{{x}^{2}}-3{{y}^{2}}=25\...

If e1{{e}_{1}} and e2{{e}_{2}} are the eccentricities of a hyperbola 3x23y2=253{{x}^{2}}-3{{y}^{2}}=25 and its conjugate, then?
(a) e12+e22=2{{e}_{1}}^{2}+{{e}_{2}}^{2}=2
(b) e12+e22=4{{e}_{1}}^{2}+{{e}_{2}}^{2}=4
(c) e1+e2=4{{e}_{1}}+{{e}_{2}}=4
(d) e1+e2=2{{e}_{1}}+{{e}_{2}}=\sqrt{2}

Explanation

Solution

Convert the given equation of the hyperbola into its general form given as x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 and compare the values of a and b. Now, write the equation of the conjugate hyperbola (for the provided hyperbola) which is given as y2b2x2a2=1\dfrac{{{y}^{2}}}{{{b}^{2}}}-\dfrac{{{x}^{2}}}{{{a}^{2}}}=1. Use the formula of eccentricity e1=1+b2a2{{e}_{1}}=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}} for the given hyperbola and eccentricity e2=1+a2b2{{e}_{2}}=\sqrt{1+\dfrac{{{a}^{2}}}{{{b}^{2}}}} for the conjugate hyperbola. Find the correct relation between e1{{e}_{1}} and e2{{e}_{2}} by substituting the values of a and b.

Complete step-by-step solution:
Here we have been provided with the hyperbola 3x23y2=253{{x}^{2}}-3{{y}^{2}}=25 and it is said that its eccentricity is e1{{e}_{1}}. If the eccentricity of the conjugate hyperbola is e2{{e}_{2}} then we have to find the correct relation between e1{{e}_{1}} and e2{{e}_{2}}.
Now, we know that the standard form of a hyperbola is given as x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1, so we can convert the given hyperbola 3x23y2=253{{x}^{2}}-3{{y}^{2}}=25 into the standard form as,
3x2253y225=1 x2(253)y2(253)=1 x2(53)2y2(53)2=1 \begin{aligned} & \Rightarrow \dfrac{3{{x}^{2}}}{25}-\dfrac{3{{y}^{2}}}{25}=1 \\\ & \Rightarrow \dfrac{{{x}^{2}}}{\left( \dfrac{25}{3} \right)}-\dfrac{{{y}^{2}}}{\left( \dfrac{25}{3} \right)}=1 \\\ & \Rightarrow \dfrac{{{x}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}-\dfrac{{{y}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}=1 \\\ \end{aligned}
On comparing it with the standard form of the hyperbola we can see that we have a=b=53a=b=\dfrac{5}{\sqrt{3}}. The eccentricity of a hyperbola of the form x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 is given by the relation e=1+b2a2e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}, so we get,
e1=1+(53)2(53)2 e1=1+1 e1=2 \begin{aligned} & \Rightarrow {{e}_{1}}=\sqrt{1+\dfrac{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}} \\\ & \Rightarrow {{e}_{1}}=\sqrt{1+1} \\\ & \Rightarrow {{e}_{1}}=\sqrt{2} \\\ \end{aligned}
Now, the two hyperbolas are said to be the conjugates of each other if the transverse and conjugate axis of one hyperbola is respectively the conjugate and transverse axis of the other hyperbola. Mathematically, we say that the conjugate hyperbola of the given hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 is given as y2b2x2a2=1\dfrac{{{y}^{2}}}{{{b}^{2}}}-\dfrac{{{x}^{2}}}{{{a}^{2}}}=1.

Therefore, the conjugate hyperbola of x2(53)2y2(53)2=1\dfrac{{{x}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}-\dfrac{{{y}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}=1 will be given as y2(53)2x2(53)2=1\dfrac{{{y}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}-\dfrac{{{x}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}=1. The eccentricity of the hyperbola of the form y2b2x2a2=1\dfrac{{{y}^{2}}}{{{b}^{2}}}-\dfrac{{{x}^{2}}}{{{a}^{2}}}=1 is given as e=1+a2b2e=\sqrt{1+\dfrac{{{a}^{2}}}{{{b}^{2}}}}, so we get,
e2=1+(53)2(53)2 e2=1+1 e2=2 \begin{aligned} & \Rightarrow {{e}_{2}}=\sqrt{1+\dfrac{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}{{{\left( \dfrac{5}{\sqrt{3}} \right)}^{2}}}} \\\ & \Rightarrow {{e}_{2}}=\sqrt{1+1} \\\ & \Rightarrow {{e}_{2}}=\sqrt{2} \\\ \end{aligned}
On squaring e1{{e}_{1}} and e2{{e}_{2}}, taking their sum we get,
e12+e22=2+2 e12+e22=4 \begin{aligned} & \Rightarrow {{e}_{1}}^{2}+{{e}_{2}}^{2}=2+2 \\\ & \therefore {{e}_{1}}^{2}+{{e}_{2}}^{2}=4 \\\ \end{aligned}
Hence, option (b) is the correct answer.

Note: Note that in the hyperbola of the form x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 the x – axis is the transverse axis and the y – axis is the conjugate axis, corresponding to which in the hyperbola of the form y2b2x2a2=1\dfrac{{{y}^{2}}}{{{b}^{2}}}-\dfrac{{{x}^{2}}}{{{a}^{2}}}=1 the y – axis is the transverse axis and the x – axis is the conjugate axis. Remember that the eccentricity of a hyperbola is always greater than 1, in an ellipse it is less than 1 and in parabola it is equal to 1.