Solveeit Logo

Question

Question: If D<sub>r</sub> = \(\left| \begin{matrix} r - 1 & n & 6 \\ (r - 1)^{2} & 2n^{2} & 4n - 2 \\ (r - 1)...

If Dr = r1n6(r1)22n24n2(r1)33n23n23n\left| \begin{matrix} r - 1 & n & 6 \\ (r - 1)^{2} & 2n^{2} & 4n - 2 \\ (r - 1)^{3} & 3n^{2} & 3n^{2} - 3n \end{matrix} \right| then r=1nΔr\sum_{r = 1}^{n}\Delta_{r}equals-

A

n2(n + 1)

B

n(n + 1)2

C

112\frac{1}{12}n(n3 + 1)

D

None

Answer

None

Explanation

Solution

Using the sum property of determinants, we get

\sum_{r = 1}^{n}{(r - 1)} & n & 6 \\ \sum_{r = 1}^{n}{(r - 1)^{2}} & 2n^{2} & 4n - 2 \\ \sum_{r = 1}^{n}{(r - 1)^{3}} & 3n^{3} & 3n^{2} - 3n \end{matrix} \right|}$$ But $\sum_{r = 1}^{n}{(r - 1)}$=$\frac{1}{2}$ n (n – 1), $\sum_{r = 1}^{n}{(r - 1)^{2}}$= $\frac{1}{6}$n (n – 1) (2n – 1) and $\sum_{r = 1}^{n}{(r - 1)^{3}}$=$\frac{1}{4}$n<sup>2</sup> (n – 1)<sup>2</sup>.Thus, $\sum_{r = 1}^{n}\Delta_{r}$=$\left| \begin{matrix} \frac{1}{2}n(n - 1) & n & 6 \\ \frac{1}{6}n(n - 1)(2n - 1) & 2n^{2} & 4n - 2 \\ \frac{1}{4}n^{2}(n - 1)^{2} & 3n^{3} & 3n^{2} - 3n \end{matrix} \right|$ Taking $\frac{1}{12}$n (n – 1) common from C<sub>1</sub> and n from C<sub>2</sub>, we get $\sum_{r = 1}^{n}\Delta_{r}$=$\frac{1}{12}$n (n – 1) (n) $$\left| \begin{matrix} 6 & 1 & 6 \\ 2(2n - 1) & 2n & 4n - 2 \\ 3n(n - 1) & 3n^{2} & 3n^{2} - 3n \end{matrix} \right|$$ = $\frac{1}{12}$ n (n – 1) (n) (0) = 0 [Q C<sub>1</sub> and C<sub>3</sub> are identical]