Question
Question: If D<sub>1</sub> = \(\left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right|\...
If D1 = xaabxabbx and D2 = xabx are the given
determinants, then -
A
D1 = 3(D2)2
B
dxd (D1) = 3D2
C
dxd (D1) = 3D22
D
D1 = 3(D2)3/2
Answer
dxd (D1) = 3D2
Explanation
Solution
dxd (D1) =1aa0xa0bx+x0ab1ab0x+xa0bx0bb1
= xabx+xabx+xabx = 3D2