Solveeit Logo

Question

Question: If D<sub>1</sub> = \(\left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right|\...

If D1 = xbbaxbaax\left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right| and D2 = xbax\left| \begin{matrix} x & b \\ a & x \end{matrix} \right| are the given

determinants, then -

A

D1 = 3(D2)2

B

ddx\frac{d}{dx} (D1) = 3D2

C

ddx\frac{d}{dx} (D1) = 3D22

D

D1 = 3(D2)3/2

Answer

ddx\frac{d}{dx} (D1) = 3D2

Explanation

Solution

ddx\frac{d}{dx} (D1) =100axbaax\left| \begin{matrix} 1 & 0 & 0 \\ a & x & b \\ a & a & x \end{matrix} \right|+xbb010aax\left| \begin{matrix} x & b & b \\ 0 & 1 & 0 \\ a & a & x \end{matrix} \right|+xbbaxb001\left| \begin{matrix} x & b & b \\ a & x & b \\ 0 & 0 & 1 \end{matrix} \right|

= xbax\left| \begin{matrix} x & b \\ a & x \end{matrix} \right|+xbax\left| \begin{matrix} x & b \\ a & x \end{matrix} \right|+xbax\left| \begin{matrix} x & b \\ a & x \end{matrix} \right| = 3D2