Question
Mathematics Question on Trigonometric Equations
If k−1∑ntan−1(k2+k+11)=tan−1(θ) , then θ =
A
n+2n
B
n+1n
C
1
D
n−1n
Answer
n+2n
Explanation
Solution
Given, k=1∑ntan−1(k2+k+11)=tan−1θ
Now, k=1∑ntan−1(k2+k+11)=k=1∑ntan−11+k(k+1)[(k+1)−k]
=k=1∑n[tan−1(k+1)−tan−1k]
=tan−12−tan−11+tan−13−tan−12+tan−14
−tan−13+…+tan−1(n+1)−tan−1n
=tan−1(n+1)−tan−1l=tan−1[1+n+1n+1−1]
=tan−1[2+nn]
∴tan−1(2+nn)=tan−1θ
⇒θ=n+2n