Solveeit Logo

Question

Mathematics Question on Statistics

If i19(xi5)=9\displaystyle\sum^{9}_{i-1}\left(x_{i}-5\right)=9 and i19(xi5)2=45\displaystyle\sum^{9}_{i-1}\left(x_{i}-5\right)^{2}=45 , then the standard deviation of the 99 items x1,x2,,x9x_{1}, x_{2} ,\cdots, x_{9} is

A

9

B

4

C

3

D

2

Answer

2

Explanation

Solution

Given, i=1n(xi5)=9\displaystyle\sum_{i=1}^{n}\left(x_{i}-5\right)=9
and i=19(xi5)2=45\displaystyle\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}=45
\therefore Standard deviation =[i=19(xi5)]2i=19(xi5)29=\sqrt{\frac{\left[\displaystyle\sum_{i=1}^{9}\left(x_{i}-5\right)\right]^{2}-\displaystyle\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}}{9}}
=(9)2459=81459=\sqrt{\frac{(9)^{2}-45}{9}}=\sqrt{\frac{81-45}{9}}
=369=4=2=\sqrt{\frac{36}{9}}=\sqrt{4}=2