Solveeit Logo

Question

Mathematics Question on limits and derivatives

If limx(1+ax+bx2)2x=e2\displaystyle\lim_{x \to\infty} \left(1+ \frac{a}{x} + \frac{b}{x^{2}}\right)^{2x} = e^{2} , then the values of a and b, are

A

a=1a = 1 and b=2b = 2

B

a=1,bRa = 1, b \in R

C

aR,b=2a \in R, b = 2

D

aR,bRa \in R, b \in R

Answer

a=1,bRa = 1, b \in R

Explanation

Solution

We know that limx(1+x)1x=e\displaystyle\lim_{x\to\infty} \left(1+x\right)^{\frac{1}{x}} =e limx(1+ax+bx2)2x=e2 \therefore \displaystyle\lim_{x\to\infty} \left(1+ \frac{a}{x} + \frac{b}{x^{2}}\right)^{2x} = e^{2} limx[(1+ax+bx2)(1ax+bx2)]2x(ax+bx2)=e2 \Rightarrow \displaystyle\lim_{x\to\infty} \left[\left(1+ \frac{a}{x} + \frac{b}{x^{2}}\right) ^{\left(\frac{1}{\frac{a}{x}+ \frac{b}{x^{2}}}\right)}\right]^{2x\left(\frac{a}{x} + \frac{b}{x^{2}}\right)} =e^{2} elimx2[a+bx]=e2 \Rightarrow e^{\displaystyle\lim_{x\to\infty}2\left[a+ \frac{b}{x}\right]} = e^{2} e2a=e2 \Rightarrow e^{2a} = e^{2} a=1 \Rightarrow a=1 , bRb \in R