Solveeit Logo

Question

Mathematics Question on limits and derivatives

If limx12\displaystyle \lim_{x \to \frac{1}{2}} 32x512x1\frac{32x^{5}-1}{2x-1} =limθ0=\displaystyle \lim_{\theta \to 0} tan(θ/m)θ\frac{tan\left(\theta / m\right)}{\theta}, then mm is equal to

A

22

B

55

C

15\frac{1}{5}

D

12\frac{1}{2}

Answer

15\frac{1}{5}

Explanation

Solution

limx12\displaystyle \lim_{x \to \frac{1}{2}} 32x512x1\frac{32x^{5}-1}{2x-1} =limθ0=\displaystyle \lim_{\theta \to 0} tan(θ/m)θ\frac{tan\left(\theta / m\right)}{\theta} (322)\Rightarrow \left(\frac{32}{2}\right) limx12\displaystyle \lim_{x \to \frac{1}{2}} x5132x12=1m\frac{x^{5}-\frac{1}{32}}{x-\frac{1}{2}}=\frac{1}{m} limθ0\displaystyle \lim_{\theta \to 0} (tanθmθm)\left(\frac{tan \frac{\theta}{m}}{\frac{\theta}{m}}\right) 16\Rightarrow 16 limx12\displaystyle \lim_{x \to \frac{1}{2}} x5(12)5x12=1m×1\frac{x^{5}-\left(\frac{1}{2}\right)^{5}}{x-\frac{1}{2}}=\frac{1}{m}\times 1 16×5×(12)51=1m\Rightarrow 16 \times5 \times\left(\frac{1}{2}\right)^{5-1}=\frac{1}{m} 16×5×116=1m\Rightarrow 16\times5\times\frac{1}{16}=\frac{1}{m} or m=15m=\frac{1}{5}