Solveeit Logo

Question

Mathematics Question on limits and derivatives

If limx5xk5kx5=500\displaystyle\lim_{x \to 5} \frac{x^k - 5^k}{x - 5} = 500 then k is equal to :

A

3

B

4

C

5

D

6

Answer

4

Explanation

Solution

Let limx5xk5kx5=500\displaystyle\lim_{x \to 5} \frac{x^k - 5^k}{x - 5} = 500 By using limxaxnanxa=n.an1\displaystyle\lim_{x \to a} \frac{x^n - a^n}{x - a} = n.a^{n -1} we have k.5k1=500k.5^{k -1} = 500 Now, put k=4k = 4, we get 4.541=5004.5^{4 -1} = 500 4.53=500\Rightarrow \:\: 4.5^3 = 500 which is ture. k=4\therefore\:\:\: k = 4