Solveeit Logo

Question

Question: If \(\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3...

If limx1x41x1=limxkx3k3x2k2\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}, then find the value of k.
(a) 53\dfrac{5}{3}
(b) 83-\dfrac{8}{3}
(c) 83\dfrac{8}{3}
(d) None of these

Explanation

Solution

We must solve both the limits separately. For this, we must use the expansion formulae a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) and a3b3=(ab)(a2+b2+ab){{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right). By simplification, we can cancel the term that makes the function indeterminate, and then substitute the value of xx to calculate the value of k.

Complete step-by-step solution:
We are given that limx1x41x1=limxkx3k3x2k2\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}. Let us solve both of these limits separately.
Let us first solve the limit limx1x41x1\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}.
We know that a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). Thus, we can write x41=(x2+1)(x21){{x}^{4}}-1=\left( {{x}^{2}}+1 \right)\left( {{x}^{2}}-1 \right).
Again, using the same expansion formula, we can write x21=(x+1)(x1){{x}^{2}}-1=\left( x+1 \right)\left( x-1 \right).
Thus, we have x41=(x2+1)(x+1)(x1){{x}^{4}}-1=\left( {{x}^{2}}+1 \right)\left( x+1 \right)\left( x-1 \right).
Hence, the above limit becomes,
limx1x41x1=limx1(x2+1)(x+1)(x1)x1\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to 1}\dfrac{\left( {{x}^{2}}+1 \right)\left( x+1 \right)\left( x-1 \right)}{x-1}
And thus, we get
limx1x41x1=limx1(x2+1)(x+1)\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to 1}\left( {{x}^{2}}+1 \right)\left( x+1 \right)
Now, we can substitute the value of xx as 1 on the right hand side of the above equation. Thus, we have
limx1x41x1=(1+1)(1+1)\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\left( 1+1 \right)\left( 1+1 \right)
And so, we get
limx1x41x1=4...(i)\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=4...\left( i \right)
Let us now solve the limit limxkx3k3x2k2\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}.
We know that a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). Thus, we can write x2k2=(x+k)(xk){{x}^{2}}-{{k}^{2}}=\left( x+k \right)\left( x-k \right).
And we also know that a3b3=(ab)(a2+b2+ab){{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right). Thus, we can write x3k3=(xk)(x2+k2+xk){{x}^{3}}-{{k}^{3}}=\left( x-k \right)\left( {{x}^{2}}+{{k}^{2}}+xk \right)
Hence, we can write the above limit as
limxkx3k3x2k2=limxk(xk)(x2+k2+xk)(x+k)(xk)\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\displaystyle \lim_{x \to k}\dfrac{\left( x-k \right)\left( {{x}^{2}}+{{k}^{2}}+xk \right)}{\left( x+k \right)\left( x-k \right)}
On cancelling the terms from the numerator and denominator, we get
limxkx3k3x2k2=limxk(x2+k2+xk)(x+k)\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\displaystyle \lim_{x \to k}\dfrac{\left( {{x}^{2}}+{{k}^{2}}+xk \right)}{\left( x+k \right)}
Now, we can easily substitute the value of xx as k on the right hand side of the above equation. Thus, we have
limxkx3k3x2k2=(k2+k2+k2)(k+k)\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{\left( {{k}^{2}}+{{k}^{2}}+{{k}^{2}} \right)}{\left( k+k \right)}
The above equation is equivalent to
limxkx3k3x2k2=3k22k\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{3{{k}^{2}}}{2k}
And so, we can now write the above limit as
limxkx3k3x2k2=3k2...(ii)\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{3k}{2}...\left( ii \right)
We can see it is given that the left hand side of equations (i) and (ii) are equal to each other. So, the right hand side of these two equations must also be equal.
Thus, we can write
3k2=4\dfrac{3k}{2}=4
Hence, we get
k=83k=\dfrac{8}{3}.
Hence, option (c) is the correct answer.

Note: Instead of solving these two limits using the expansion formulae, we can also solve the first limit using the following direct formula, limxaxnanxa=nan1\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}=n{{a}^{n-1}}, and we can solve the second limit using the formula limxaxmamxnan=mnamn\displaystyle \lim_{x \to a}\dfrac{{{x}^{m}}-{{a}^{m}}}{{{x}^{n}}-{{a}^{n}}}=\dfrac{m}{n}{{a}^{m-n}}.